Biomedical Informatics at the University of Chicago: A Multidisciplinary Approach

Umberto Tachinardi, MD, MS Assistant-Dean for Academic and Research Informatics Research Associate - Associate Professor

The University of Chicago Cancer Research Institute

Slide 2

The Biomedical Research "Cloudscape"

Funding
Regulatory
Clinical Research
Healthcare
Technology
Basic Sciences Research
Organizational

Slide 3

The science machine

Hypothesis ???

Ideas

Collaboration

Funding

Publications

Patents

Science "knowledge"

Personalized Medicine

"Real-time-matrix" Science

Analysis

Data Collection

Research

Clinical

Labs

Molecular

Pubs

Epi

Recycled Data/

Knowledge

UC Research IS structures

UCCRC

DoM

Peds

Health Studies

CBIS

iBi

CI

CaBIG

CTSA

Velos

Slide 5

The CBIS Academic and Research Applications Group

CIO (Eric Yablonka) Clinical Applications Governance PM Infastructure (IT) Academic & Research

Slide 6

The CBM Cosmos

Velos

Tridon KidsGenes

TraM

Clinical Research Support IS

Grants IS

IRB IS

Contract Mgt

Special Support

(Servers/Storage/Computation)

Education

Researchers Advocacy

Policies

Demo Projects

Storage

Special Projects

BI Research

CTSA

CI

BSDS

iBi

UCMCIT

NSIT

Networking

Back Office

Pritzker IS

Identified Clinical Data

Security

Support

Servers

Slide 7

Current Situation

eSphere

Velos

KidsGenes

TraM

Tridom

Oacis

Other legacy

Epic

IRB

HIPAA

Consented Patients

De-identified Patients

Identified Patients

Research

Clinical

Radiology

Slide 8

Future???

De-Identification (Research) Ontology Services NLP Services

Local PubMed

eSphere Velos IRB

Clinical Research Datawarehouse

KidsGenes TraM Tridom

SOA

Research Clinical

Oacis Other legacy

Epic Clarity

Radiology
Honest Broker

Honest Broker (Clinical)

Clinical Research Data Integration

Epic

Labs

Path

Rad

I

HL7

Velos

Π

SOA

SOA/ESB

CBIS

SOA/ESB

iBi

CaGrid Node

CaTissue

CaExchange

III

SOA/Grid

NCI

Slide 10

The BSD/BRI Initiative
Data exchange architecture

UCH

SOA pipeline

BSD

Patient Demographics

Lab data

Alerts (ie SAE)

Clinical Annotation

Images

Administrative messages (CT match)

Maintenance messages

Etc

Slide 11

Infra-Structure demands

Storage

Networking

Slide 12

Graphic: Bar Chart of Growth of Storage by Fiscal Year and Terabytes Storage

Slide 13

Integrated Solution Workflow

Data Acquisition: User entered, LIMS, Collected by Instrumentation, etc.

Researcher

Application Server

PACs

Proteomic

Clinical

Ontology

eVelos

LIMS

Microarray

Sequencing

NLP Data

Databases

Nth

Code Mapping

Microarray DB

Images

Disk Storage

High Speed Disk (SAS)

Moderate Speed Disk (SATA)

Moderate Speed Cache for Archival Disk

(BluRay & Worm Tape)

Integrated Solution Workflow

Proteomic

Clinical

Ontology

Microarray

Sequencing

NLP Data

Databases

Nth

Disk Storage

High Speed Disk

Moderate Speed Disk

Moderate Speed Cache for for Archival Disk

High Speed Networking

Data Center

Network Speeds

1GB, 2GB,4GB

10GB,20GB

Computational Power

Specialized Servers

Shared Large Memory Model Servers

MPI Cluster Servers

Shared Programs

Slide 15

Integrated Solution for Modern Biomedical Research

1+ Years

Data Acquisition: User entered, LIMS, Collected by Instrumentation, etc.

Application Servers (100s)

PACs

Proteomic

Clinical

Ontology

eVelos

LIMS

Microarray

Sequencing NLP Data

Databases

Nth

Application Server < 100

SOA ESB (SOAP/Web Services)

Ontology Services
Trusted Broker
NLP Services
Security Broker

GRID Service

External Collaboration

Slide 16

Velos Usage

The University of Chicago is currently using Velos in many of their operational processes.

Daily Use

Clinical Trials Regulatory Management Clinical Trials Data Management Listing of Open Protocols on the Intranet Consent Assess For Clinics

Database

Clinical Trials Review Committee Scientific and Accrual Monitoring Committee Regulatory Manager Dashboard Supervisory Dashboard

Reports

Clinical Data Upload System (CDUS) Grant Reporting Study IRB Expiration Report NCI Summary 4 Report

Slide 17

Velos Current Stats

Patients ~ 26,000

Active Studies (2,849)

Surgery 213; Neurology 31; Medicine 930; Pediatrics 15; Hem/Onc 1670 (1280 - open to accrual, 390 -closed to accrual)

Users ~ 270

Suregery 21, Neurology 7, Medicine 65, Hem/Onc 143, Biostats 4, Investigational Pharmacy 3, OCR 5, CBIS 2

Slide 18

Current use of Velos at UofC

Departments

Health Studies

CBIS

Cancer Research Center

General Clinical Research

Gynecology/Oncology

Hematology/Oncology

Pulmonary/Critical Care

Medicine/Oncology

Office of Shared Research Facilities

Clinical Research Support Office

Neurology

Gynecology/Obstetric

Office of Clinical Research

Psychology

Pediatrics

Pediatrics Oncology

Radiology

Radiology/Oncology

Surgery

Surgery/Oncology

University of Chicago Pharmacy

Medicine

Neurology/Oncology

Cancer Clinical Trials Office

Slide 19

Graphic: Screen Grab of the University of Chicago Velos eResearch web page

Slide 20

Graphic: Screen Grab of the University of Chicago Velos Communication web page

Graphic: Form Samples

Slide 22

Graphic: Form Samples – Adverse Events

Slide 23

Graphic: Form Samples – BP Form

Slide 24

Diagram: Research Nurses/Data Managers and Regulatory managers different roles

Slide 25

Velos

Report Manager

Prots/Cons

CTRC

SAM

Ruby on Rails

Slide 26

Graphic: Web Application – Protocol Listing

Slide 27

Graphic: Web Application – Protocol Listing; continued

Slide 28

Graphic: Web Application – Protocol/Consents

Slide 29

Graphic: Web Application – Regulatory Dashboard Application

Slide 30

Graphic: Web Application – Regulatory Dashboard Application; continued

Slide 31

The Velos "Core Team" at UofC

UCCRC

Marcy List

Amber Burnett

Jia Cheng

Eugene Limb

Swapna Bapat

Arthur Christoph Consuelo Skosey

OCR

Dionisia Saner Bethany Martell

Department of Medicine Don Saner Nick Shank Tim Holper

Department of Pediatrics Eneida Mendonca Michael Rose

CBIS

Seigmund Johnson Ryan Crist Clyde Danganan

& many more....

Slide 32

Translational Data Mart (TraM):

What Is TraM and What Can TraM Do?

Xiaoming Wang April 22, 2009

Slide 33

What Is TraM and What Does It Do?

TraM is a healthcare data integration warehouse with a web-based application interface: https://tram.uchicago.edu

TraM is a "generic" system that can be used with a broad range of healthcare data and has been customized for all types of cancer data, not just breast cancer

TraM can provide an integration environment for various biomedical domain databases

TraM is scalable and configurable but still a work in progress

Slide 34

Data Unification and Integration Workflows at UCMC

Cancer Registry (IMPAC)

Trial Registry (eVelos)

Family Genetics (Progeny)

Basic Research (various sources)

Chemo Records (BEACON)

Clinics (EPIC)

Medical Survey (various DBs)

Specimen Bank (eSphere)

Image (Stentor)

Image Metadata (radiology labs)

Slide 35

Chart: Dynamic Statistics (not yet synced to source data)

Slide 36

Screen Grab: Support Data Mining (Longitudinal)

Slide 37

Screen Grab: Support Data Mining (cross-sectional)

Slide 38

Screen Grab: Support Data Mining (zone in study)

currently underdevelopment

Slide 39

Screen Grab: Locate Sample for Basic Research

Slide 40

Screen Grab: Support Full Scale Curation

(editing survey questionnaire)

Slide 41

Screen Grab: Multiple Level of Data Privacy Control

(per IRB, project, and user role)

Slide 42

Acknowledgements

Computation Institute Xiaoming Wang

Lili Liu

Greg Cross

Ian Foster

Center for Cancer Genetics

Funmi Olopade

Kisha Hope

Shelly Porcellino Jim Fackenthal Others

Dept. of Radiology Paul Chang Gilliam Newstead Sunny Arkani Janson

Other Breast Cancer SPORE Cancer Registry (Cassie Simon)

Specimen Bank (Leslie Martin)

Slide 43

Department of Medicine

T.R.I.D.O.M.

Total patients asked: 6943
Patients consented: 5370
Patients refused: 1499
Percent consented: 77.34%
Samples received: 3446

Department	Consented	Samples Received
CARDIOLOGY	155	118
DERMATOLOGY	2	1
EMERGENCY MEDICINE	2	2
ENDOCRINOLOGY	214	166
GASTROENTEROLOGY	1312	932
GENERAL MEDICINE	800	527
HEMATOLOGY/ONCOLOGY	310	225
HOSPITALIST MEDICINE	5	5
INPATIENT	168	64
NEPHROLOGY	52	48
NEUROPHYSIOLOGY	10	4
PULMONARY/CRITICAL CARE	1335	521
RHEUMATOLOGY	975	842
Unknown	30	17

Slide 44

Graphic: Chart based on ethnicity

Slide 45

Tridom

The Chicago BioMedicine Information Services (CBIS) Service Oriented Architecture (SOA)

Translational Research Support Services:

Patient Data Services (Laboratory, Pathology, Radiology) Electronic Honest Broker DICOM iBroker

Paul J. Chang, M.D., FSIIM Professor & Vice-Chairman, Radiology Informatics Medical Director, Pathology Informatics University of Chicago School of Medicine

Medical Director, Enterprise Imaging Architect, CBIS SOA Initiative University of Chicago Medical Center

Slide 47

Typical Legacy-based IT Environment:

"Using humans to integrate workflow"

Patient EHR

RIS

Path

PACS

Slide 48

Integration using a "Single Vendor Solution"

Single Vendor Application "Suite"

EHR Module

RIS Module

Path Module

PACS Module

Slide 49

Using "Edge" Protocols (DICOM & HL7) to Orchestrate Integrated Workflow: IHE PACS – RIS Integration Workflow Model

Integration Engine Approach Using Edge Protocols (HL-7, DICOM) to Transfer State

Example: PACS – RIS Integration Workflow Model

Slide 51

Screen Grab: Amazon.com homepage

<u>Slide 52</u>

Screen Grab: Netflix.com homepage

<u>Slide 53</u>

Screen Grab: igoogle.com homepage

Slide 54

Enterprise Integration Model: Towards a Service Oriented Architecture

Pathology

HIS

RIS

PACS

Middle ("Business Logic") Layer (Agents, ORBs, Web Services, etc.)

Slide 55

Patient Data Services

(Laboratory, Pathology, Radiology)

Slide 56

Electronic Honest Broker

Slide 57

Process Overview

Slide 58

High-Level Logical Architecture

Slide 59

Technologies Overview

Java – SE6, EE5, JAX-WS 2.1

SOAP Service and Client – JAX-WS generated from WSDL

Database agnostic; Oracle implementation

LDAP agnostic; AD implementation

Servlet Container agnostic; Tomcat implementation

Screen Grab: Login Page

Slide 61

Screen Grab: Electronic Honest Broker

Slide 62

Screen Grab: Electronic Honest Broker: Add Study

Slide 63

Screen Grab: Electronic Honest Broker: New Study Added

Slide 64

Screen Grab: Electronic Honest Broker: Adding a New Patient

Slide 65

Screen Grab: Electronic Honest Broker: Verify Patient

Slide 66

Screen Grab: Viewing PHI

Slide 67

Screen Grab: Honest Broker Study View

Slide 68

DICOM iBroker

Slide 69

DICOM iBroker

A portal and related services that provide end-users simple and powerful HIPAA compliant access to clinical image datasets

Leverages Electronic Honest Broker

Slide 70

Screen Grab: DICOM iBroker

Slide 71

Screen Grab: DICOM iBroker

Slide 72

Screen Grab: DICOM iBroker

Slide 73

Screen Grab: DICOM iBroker

Screen Grab: DICOM iBroker

Slide 75

Screen Grab: DICOM iBroker

Slide 76

Screen Grab: DICOM iBroker

Slide 77

Diagram: First integrated use of SOA

Slide 78

caBIG

caBIG uses caGrid as the foundation which uses various components of Globus Toolkit

WS-RF Framework Security Framework

Index Service

We lead the Workflow Project of caGrid

We are part of the Architecture workspace

Acknowledgement: Ravi Madduri

Slide 79

UCCRC-caBIG

We have a caGrid node up and running on caBIG

We evaluated caArray and we deployed it in UCCRC

We are working with Velos in an effort to do CDUS submissions using a caGrid Service

Slide 80

caGrid Environment

Slide 81

IRIS

Integrated Research Information Services

Slide 82

Current IT Research Environment

ARG – Academic and Research Group (PSMTrak,

CI – Computational Institute (TRAM)

CRC – Cancer Research Center (Velos)

DID – Development, Integration & Databases (Clinical SOA)

HSD – Health Studies Department (Sandstone)

iBi – Institute for BioInformatics

MAD – Medicine Application Developers (TRIDOM)

NSIT – Networking Services and Information Technologies

Functional Academic & Research Domains

Slide 84

Current ARG Applications & Systems

Slide 85

Current Databases and Feeds

Slide 86

ARG Ecosystem

Slide 87

SOA Layers

Slide 88

Diagram: Consumers

Slide 89

UC|ißi

Slide 90

Genome Science and Biomedical Informatics increase the "experimental space" and "clinical space", respectively one can "search" for biomedical solutions

Genetics, Genome Science, Systems Biology Phenomics

In "genetic" studies we seek to correlate heritable changes in DNA to Disease Phenotype. In "genomic" studies we seek to correlate DNA changes with other changes in "molecular state" to predict Disease Phenotype. In Biomedical Informatics we seek to characterize "disease" by its component parts with the goal of predicting disease susceptibility by correlation to individual differences in "molecular states".

Slide 91

As of Jan 2008, *GenBank* houses just under 1 Terabyte (1012) of DNA sequence information. Though huge by pre-genome sequencing standards, the data storage challenge is really a consequence of the new "experimental space" that genome science and genome technology enable.

Since 2007 Genbank doubles every 6months

Shorter than Moore's law (computer power doubling every 20 months!)

Automated literature mining to generate a Molecular Interaction Network

We are currently screening 250,000 journal articles...

2.5M reasoning chains

4M statements

Slide 93

Discovering Pathogenic Pathways: why do we need to integrate information?

All currently stored in iBi repository.

New "experimental space"

Slide 94

PhenoGO: A Resource for the Multiscale Integration of Clinical and Biological Data

Lee T. Sam, Eneida A. Mendonça, Carol Friedman,

Yves A. Lussier, M.D. (Corresponding Author)

Director, Dept. of Medicine Center for Biomedical Informatics

Associate Director for Informatics, Cancer Research Center

Co-Director, Clinical Translational Science Award (CTSA) Informatics Core

Associate Professor of Medicine, Biological Science Division

Judith Blake, Jackson Lab

Slide 95

The PhenoGO Encoding Pipeline

Slide 96

Diseases and Disorders

Slide 97

Web Query: Basic

Runs a query analogous to an SQL OR for the search terms

Slide 98

Web Query: Advanced

Runs a query analogous to an SQL AND for the search terms

Slide 99

Conclusions

Substantial additions to a high-quality, wide-raging gene-GO-phenotype resource drawn from the biomedical literature and existing knowledge bases It's a fantastic resource and I urge everyone to make use of it http://www.phenogo.org

Acknowledgements

University of Chicago Tara Borlawsky (now at Ohio State)

Yang Liu Jianrong Li

Grants

NLM, 1K22 LM008308-01 (YL) NLM, R01 LM007659-01 (CF)

NLM 1U54 CA121852-01A1 National Center: Multi-Scale Study of Cellular Networks

Slide 101

Discovery of Protein Interaction Networks Shared by Diseases

Lee Sam, Yang Liu, Jianrong Li, Carol Friedman, Yves A. Lussier

Slide 102

PhenoGO.org

Lussier Y, Borlawsky T, Rappaport D, Liu Y, Friedman C. Pac Symp Biocomput.

2006;:64-75.

Database of Phenotypic context for

GO annotations

Gene-phenotype-GO

NLP (BioMedLEE) and computational terminology-derived

3,102 distinct diseases and phenotypes (# human)

32,911 distinct proteins (7,016 human)

532,407 total records (# human)

Precision: 85% [n=120] Recall: 76% [n=120]

Slide 103

Overall process

Slide 104

What do we have data on?

PhenoGO

7016 proteins (101,711 entires)

Reactome

1140 proteins (126,147 entires)

Shared

176 Proteins

Slide 105

Acknowledgements

University of Chicago

Yang Liu Jianrong Li Tara Borlawsky Yves A. Lussier Rosie H Xing

Columbia University

Carol Friedman

Synergistic Collaborations:

GO/PATO consortium Michael Ashburner, Flybase Judith Blake, MGI Suzanna Lewis, UB Joanna Amburger, OMIM

Grants

NLM, 1K22 LM008308-01 (YL) NLM, R01 LM007659-01 (CF) NLM 1U54 CA121852-01A1 National Center: Multi-Scale Study of Cellular Networks (YL/Phenotypes & CF/NLP Team Leaders)

Slide 106

Probing genetic overlap among complex human phenotypes

<u>Slide 107</u>

 $\overline{\Sigma=1.5\times10^6}$ patient records

Slide 108

Data: ICD9 codes in Columbia University clinical database

Slide 109

Results: Autism

Slide 110

Results: Schizo-phrenia

Slide 111

Diagram: Number of patients

Slide 112

Diagrams: Diseases A, B, C

CIQR ("Seeker"):

Context-Initiated Question and Response Eneida Mendonca, MD, PhD

Slide 114

History

Linking medical records to information resources

Making retrieval specific to a particular patients

Using statistical and semantic models to identify relevant information in patient's records Re-ranking retrieval of scientific literature based on the patient's map

Problems: not a good time for retrieval, questions not always related to the part of the record the physician is looking at.

Slide 115

CIQR: Objectives

Capture information needs when they occur, without disrupting workflow

Deploy mobile devices using data and voice input

Translate high-level information needs into search strategies adapted to user needs capabilities of resources

Develop models of search strategies using human search expertise (reference librarians)

Study how librarians classify, clarify and refine questions

Automate using speech processing and natural language parsing

Deliver materials relevant to information needs in an accessible format and in a timely manner

Organize materials retrieved by librarians and transmit them to clinicians for display on mobile devices

Slide 116

Where we are going?

Slide 117

From Bench to Bedside:

Lessons Learned in the University of Chicago CTSA

Re-Engineering Translational Research at The University of Chicago Clinical and Translational Science Award U54 RR023560

Julian Solway, MD University of Chicago

Slide 118

Image: Satellite photo of the South Side of Chicago

Slide 119

Univ of Chicago Medical Center Primary Service Area (PSA) – 1.1 M residents

The health status of the 1.1 M residents of the UCMC PSA is extremely poor, as reflected in extraordinarily high rates of common complex diseases and of infant mortality. Furthermore, 10-15% of UHI adult residents are disabled.

It is in this context that the University of Chicago CTSA program seeks to translate research discoveries into real, effective therapies.

Slide 121

A comprehensive approach to the challenges:

Institute for Translational Medicine (ITM) – a new University structure to collect, integrate, and disseminate the intellectual, organizational, and resource infrastructure needed to reduce barriers to translational research interactions among UC investigators. The ITM:

provides new modes of "research navigation" assistance to help UC and Community faculty and trainees identify and contact collaborators

will incentivize multidisciplinary collaborations with pilot and collaborative seed grant funding

support the actual research with a wide spectrum of core and intellectual capabilities

Urban Health Initiative (UHI) – principal goals are:

fully engage our Community in developing clinical and community research agendas involve Community organizations and practices in the conduct, interpretation and dissemination of that research

accelerate the translation of health knowledge into and out of our Community most importantly, reduce the marked health disparities in our Community through a combination of service, education, and research initiatives. CTSA Community Translational Science Cluster is the principal research infrastructure component of the UHI.

Slide 122

Three 3 bold steps that will overcome these obstacles.

Training in Clinical and Translational Science

Greatly expanded our training for careers in clinical and translational research, now providing research training and career development opportunities for physician and non-physician scientists, allied health professionals, undergraduates, and high school students, both at UC and in our Community.

Previous barrier to such research training goal as one of "activation energy", in that we have had the essential capability for such training and career development, but failed to realize our full potential due to inadequate mentor incentives, inadequate course offerings, and inadequate recognition of the need for comprehensive training for careers throughout the translational research spectrum.

ITM Training Cluster – broad research training/career development mission, enhanced faculty/mentor incentives, more clearly defined training pathways, and wide buy-in throughout the CTSA community, operating across divisional, departmental, professional school, and university lines to bring together CTSA faculty and students from UC, our allied institutions, and the Community.

Committee on Clinical and Translational Science – new academic entity to advance multidisciplinary PhD/MS training in clinical and translational research.

Slide 123

Org Chart: The University of Chicago CTSA

Slide 124

Org Chart: The University of Chicago ITM

Slide 125

Screen Grab: The University of Chicago ITM intranet

Slide 126

Graphic: Pangea

Permian 225 million years ago

Slide 127

Informaticians and other related contributors at UofC

Slide 128

Contact address:

Umberto Tachinardi utachina@bsd.uchicago.edu